翻訳と辞書
Words near each other
・ Nakahagi Station
・ Nakahama Manjirō
・ Nakahama Station
・ Nakahanda Station
・ Nakahara
・ Nakahara Nantenbo
・ Nakahara Prize
・ Nakahara-ku, Kawasaki
・ Nakahashi Tokugorō
・ Nakahata Station
・ Nakahechi, Wakayama
・ Nakai
・ Nakai (surname)
・ Nakai (vocation)
・ Nakai Chikuzan
Nakai conjecture
・ Nakai District
・ Nakai language
・ Nakai Misl
・ Nakai Riken
・ Nakai Snowfield
・ Nakai Station
・ Nakai Station (Ishikawa)
・ Nakai, Kanagawa
・ Nakaibito, New Mexico
・ Nakaiburi Station
・ Nakaima
・ Nakaimo - My Sister Is Among Them!
・ Nakaisamurai Station
・ Nakaizu, Shizuoka


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Nakai conjecture : ウィキペディア英語版
Nakai conjecture
In mathematics, the Nakai conjecture is an unproven characterization of smooth algebraic varieties, conjectured by Japanese mathematician Yoshikazu Nakai in 1961.〔.〕
It states that if ''V'' is a complex algebraic variety, such that its ring of differential operators is generated by the derivations it contains, then ''V'' is a smooth variety. The converse statement, that smooth algebraic varieties have rings of differential operators that are generated by their derivations, is a result of Alexander Grothendieck.〔. Schreiner cites this converse to EGA 16.11.2.〕
The Nakai conjecture is known to be true for algebraic curves〔.〕 and Stanley-Reisner rings.〔.〕 A proof of the conjecture would also prove the Zariski–Lipman conjecture, for a complex variety ''V'' with coordinate ring ''R''. This conjecture states that if the derivations of ''R'' are a free module over ''R'', then ''V'' is smooth.〔.〕
==References==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Nakai conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.